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Background



Neuro-symbolic Approachs

• Neural networks (NNs) are effective for representation learning.
• However, NNs are not necessary to obey the logical constraints.
• Neuro-symbolic methods aim to combine NNs with explicit logic.

1/33



An Example of Encoding First-order Logic Constraints.

• Task: Given the input image and input tokens, the task is to develop a
function to predict whether two tokens coexist in a block.

• Rule: If tokens i and j are in the same block and tokens j and k are
also together, then tokens i and k should be in the same block.

图 1: An example of using LogicMP in the image segmentation problem.
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Markov Logic Networks

• Entities: the constants, e.g., two tokens e1 and e2.
• Predicates: the property or the relation, e.g., coexist predicate C.
• Ground atom: the predicate with particular entities, e.g., C(e1, e2).
• Formula: e.g., ∀a, b, c : C(a, b) ∧ C(b, c) =⇒ C(a, c).
• Grounding: e.g., C(e1, e2) ∧ C(e2, e3) ∨ C(e1, e3).
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• Markov logic network (MLN) is an elegant probabilistic modeling with
first-order logic, using the first-order logic as the joint potential.

p(v|O) ∝ exp(
∑
i

ϕu(vi)︸ ︷︷ ︸
neural semantics

+
∑
f∈F

wf

∑
g∈Gf

ϕf (vg))︸ ︷︷ ︸
symbolic FOLCs

, (1)

• v/O is the set of unobserved/observed variables
• neural semantics:

• ϕu(·) : vi 7→ R models the evidence of single ground atom i in status vi.
• symbolic FOLCs:

• wf presents the weight of formula f

• ϕf (·) : vg 7→ {0, 1} checks whether f is satisfied in g

• Gf enumerates all assignments of f ,
•
∑

g∈Gf
ϕf (vg) measures the number of satisfied groundings of f .
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However, MLN inference has been a challenging problem since 2006.

• Lifted inference falls short in handling distinctive
evidence [5, 17, 13, 6, 8].

• In general, the direct inference is #P-complete [4].
• The most relevant works, pLogicNet and ExpressGNN [15, 23], used
variational EM but the inference remains inefficient.

5/33



Our Approach: LogicMP



Motivation: More Efficient

• We use mean-field variational inference [24, 18, 11] to expand the
MLN inference into forward computation.

• We use the structural symmetries in first-order logic for parallel
computation.
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LogicMP

Here, we present LogicMP, a method to encode first-order logic
constraints over the neural network.

• It is valid for first-order logic.
• It is efficient using parallel computation.
• It is valid for arbitrary neural networks.
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Approach Details - 1

• Recap the joint distribution with the neural network and the Markov
logic network (MLN):
• p(v|O) ∝ exp(

∑
i

ϕu(vi)︸ ︷︷ ︸
Neuralsemantics

+
∑
f∈F

wf

∑
g∈Gf

ϕf (vg))︸ ︷︷ ︸
First−orderlogic

where v is the set of unobserved variables. The second term is for
symbolic FOLCs, where

∑
g∈Gf

ϕf (vg)) measures the number of
satisfied groundings of f .
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Approach Details - 2

• Perform mean-field variational inference over MLN.
• Qi(vi)← 1

Zi
exp(ϕu(vi) +

∑
f∈F wf

∑
g∈Gf (i)

Q̂i,g(vi)) where Zi is the
partition function, Gf (i) is the groundings of f that involve the ground
atom i, and

• Q̂i,g(vi)←
∑

vg−i
ϕf (vi,vg−i)

∏
j∈g−i

Qj(vj) is the grounding message
that conveys information from the variables g−i to the variable i w.r.t.
the grounding g. g−i denotes the ground atoms in g except i, e.g.,
g−C(e1,e3) = {C(e1, e2), C(e2, e3)}.
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Approach Details - 3

• Less Computation per Grounding Message.
• Qi(vi)← 1

Zi
exp(ϕu(vi) +

∑
f∈F wf

∑
g∈Gf (i)

Q̂i,g(vi))

• Q̂i,g(vi)←
∑

vg−i
ϕf (vi,vg−i)

∏
j∈g−i

Qj(vj).
• Q̂i,g(vi)← 1vi=¬ni

∏
j∈g−i

Qj(vj = nj) [Theorem 3.1]
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Approach Details - 4

• Convert the inference into tensor parallel computations.
• Q̌

[f,h]
rh (vrh)← 1vrh

=¬nh
einsum(“...,Af

rj ̸=h , ...→ A
f
rh”, ...,Qrj ̸=h

(nj ̸=h), ...)

• Qr(vr)← 1
Zr

exp(Φu(vr) +
∑

[f,h],r=rh
wfQ̌

[f,h]
rh (vrh))

6
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Grounding Message

Message to  w.r.t. grounding  is




𝙲(e1, e3) g := ¬𝙲(e1, e2) ∨ ¬𝙲(e2, e3) ∨ 𝙲(e1, e3)

Q̂𝙲(e1,e3),g(1) = Q𝙲(e1,e2)(1)Q𝙲(e2,e3)(1)

→

→

𝙲( ⋅ , ⋅ )

Unary Potential Φu

g := ¬𝙲(e1, e2) ∨ ¬𝙲(e2, e3) ∨ 𝙲(e1, e3)

→𝙲(e1, e2) 𝙲(e2, e3) 𝙲(e1, e3)

𝙲(e1, e3) 𝙲(e1, e2) 𝙲(e2, e3)

𝙲(e2, e3) 𝙲(e1, e3) 𝙲(e1, e2)

→𝙲(e1, e2) 𝙲(e2, e4) 𝙲(e1, e4)

𝙲(e1, e4) 𝙲(e1, e2) 𝙲(e2, e4)

𝙲(e2, e4) 𝙲(e1, e4) 𝙲(e1, e2)

→

→

g := ¬𝙲(e1, e2) ∨ ¬𝙲(e2, e4) ∨ 𝙲(e1, e4)

g := ¬𝙲(e1, e2) ∨ ¬𝙲(e2, e5) ∨ 𝙲(e1, e5)

g := ¬𝙲(e3, e4) ∨ ¬𝙲(e4, e5) ∨ 𝙲(e3, e5)

…
…

𝙲( ⋅ , ⋅ ) 𝙲(a, b)

𝙲(a, b)

Marginal Q

𝙲(b, c) 𝙲(a, c)

¬𝙲(a, c) ¬𝙲(b, c)

𝙲(b, c) ¬𝙲(a, c) ¬𝙲(a, b)

⨂

⨂

⨂

⟹

⟹

⟹

⨁

𝙲( ⋅ , ⋅ )

Marginal Q

An Mean-field Iteration in LogicMP w.r.t. transitivity rule  f := ∀a, b, c : ¬𝙲(a, b) ∨ ¬𝙲(b, c) ∨ 𝙲(a, b)

∧ ⟹

∧

∧

⟹

⟹

…

图 2: Instead of sequentially generating groundings (left), we exploit the
structure of rules and formalize the MF iteration into Einstein summation
notation, which enables parallel computation (right).
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Experiments



Encoding FOLC over Document Images

• Task: Given the input image and input tokens, the task is to develop a
function to predict whether two tokens coexist in a block.

• Rule: If tokens i and j are in the same block and tokens j and k are
also together, then tokens i and k should be in the same block.
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表 1: Comparison of F1 on FUNSD. Better results are in bold. “full” denotes the
full set while “long” only considers the blocks with more than 20 tokens. “-”
means failure.

Methods full long

LayoutLM-BIOES [22] 80.1 33.7
LayoutLM-SpanNER [7] 74.0 22.0
LayoutLM-SPADE [10] 80.1 43.5
LayoutLM-Pair [20] 82.0 46.7

LayoutLM-Pair w/ SL [21] - -
LayoutLM-Pair w/ SPL [1] - -
LayoutLM-Pair w/ SLrelax 82.0 47.8
LayoutLM-Pair w/ LogicMP 83.3 50.1

LayoutLM-Pair w/ SLrelax+LogicMP 83.4 50.3
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Encoding FOLCs over Relational Graphs

• Task: Given the relational facts, the task is to develop a function to
predict whether a latent fact is true.

• Rule: Rules of family/school/academic relations.
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表 2: AUC-PR on Kinship, UW-CSE, and Cora. The best results are in bold. “-”
means failure.

Method Kinship UW-CSE Cora

S1 S2 S3 S4 S5 avg. A. G. L. S. T. avg. S1 S2 S3 S4 S5 avg.

M
LN

MCMC [16] .53 - - - - - - - - - - - - - - - - -
BP/Lifted BP [17] .53 .58 .55 .55 .56 .56 .01 .01 .01 .01 .01 .01 - - - - - -
MC-SAT [14] .54 .60 .55 .55 - - .03 .05 .06 .02 .02 .04 - - - - - -
HL-MRF [2] 1.0 1.0 1.0 1.0 - - .06 .09 .02 .04 .03 .05 - - - - - -

NN
+ ExpressGNN .56 .55 .49 .53 .55 .54 .01 .01 .01 .01 .01 .01 .37 .66 .21 .42 .55 .44

ExpressGNN w/ GS [23] .97 .97 .99 .99 .99 .98 .09 .19 .14 .06 .09 .11 .62 .79 .46 .57 .75 .64
ExpressGNN w/ LogicMP .99 .98 1.0 1.0 1.0 .99 .26 .30 .42 .25 .28 .30 .80 .88 .72 .83 .89 .82
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Encoding FOLCs over Text

• Task: Given the text sequence, the task is to develop a function to
predict the sequence labels.

• Rule: adjacent rules and list rule.
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表 3: Comparison of F1 on CoNLL2003. Better results are in bold. adj (list)
denotes the adjacent (list) rules. “-” means failure.

Methods F1

BLSTM [9] 89.98
BLSTM (lex) [3] 90.77
BLSTM w/ CRF [12] 90.94
BLSTM w/ CRF (mean field) [19] 91.07

BLSTM w/ SL [21] -
BLSTM w/ SPL [1] -
BLSTM w/ SLrelax 90.38
BLSTM w/ LogicDist (adj) [9] p: 89.80, q: 91.11
BLSTM w/ LogicDist (adj+list) [9] p: 89.93, q: 91.18
BLSTM w/ LogicMP (adj) 91.25
BLSTM w/ LogicMP (adj+list) 91.42
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Conclusion



Conclusion

• LogicMP is an efficient MLN inference method.
• LogicMP is a neural layer with dense computations.
• LogicMP integrates FOLCs into any encoding network.
• LogicMP enjoys both the efficiency and effectiveness.
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